Bases de données

Licences 3 – TD 2006-2007

Par Javier Gil

(javiergquijano@gmail.com)

TD2

Université Montpellier 1 UFR Administration Économie et Sociale

Plan du cours

2ème séance:

- Modélisation des données : construction du Modèle Conceptuel de Données (suite)
- Pratique sur Excel
 - Correction Dictionnaire de données (DD)
 - Recherche d'identifiant
 - Matrice de dépendance fonctionnelle (MDF)

Plan du cours

2ème séance:

- Modélisation des données : construction du Modèle Conceptuel de Données (suite)
- Pratique sur Excel
 - Correction Dictionnaire de données (DD)
 - Recherche d'identifiant
 - Matrice de dépendance fonctionnelle (MDF)

29/09/2006 Javier Gil

Construction du MCD

Cas de la location de livres

Recueil des informations (phrases simples + contraintes)

- On explicite clairement les règles de gestion :
- Ex. de règles
 - Règle 1: Un client peut emprunter un ou plusieurs exemplaires
 - Règle 2: Un livre peut figurer en un ou plusieurs exemplaires
 - Règle 3: Un exemplaire peut être emprunté ou rendu dans n'importe quelle boutique

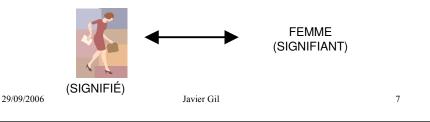
Recueil des informations

- On établit la liste des informations utiles à partir du document fourni => « locations.doc »
- On normalise en utilisant de préférence des noms:
 - Courts
 - Clairs
 - · Sans espaces
 - · Sans accents
 - Ex.: ClientNom pour nom du client,
 EditeurNom pour nom de l'éditeur

29/09/2006 Javier Gil

Construction du MCD

Cas de la location de livres


• Construction du dictionnaire (DD) => ex. de dictionnaire

Nom	Signification	Type	Taille	Nature	Règle de calcul ou d'int.
BoutiqueNom	Nom de la boutique	T	80	Elem.	
ClientNom	Nom du client	T	50	Elem.	
DateSortie	Date de sortie d'un livre	D/H	80	Elem.	Forme jjmmaa
TarifRetard	Tarif par jour de ret.	N	6	Const.	
29/09/2006		Javier G	il		6

3

Épuration du dictionnaire

- Des difficultés peuvent apparaître entre les SIGNIFIANTS et les SIGNIFIÉS
- Un **signifié** est un **objet abstrait** ou **concret** que l'on veut qualifier
- Un signifiant est un mot employé pour représenter ce signifié

Construction du MCD

Épuration du dictionnaire

- Il faut éviter les cas suivants :
 - Synonymes : 2 signifiants pour 1 même signifié
 - Ex.: No de client et Code client
 - Polysèmes : 1 signifiants pour 2 signifiés
 - Ex.: NOM pour nom du client et pour nom de la boutique
- Dans le dictionnaire des données, UN NOM SERA DONNÉ UNE FOIS POUR TOUTES A CHAQUE TYPE DE DONNÉES et on éliminera synonymes et polysèmes

Recherche des identifiants (clés prim.)

- On recherche dans l'énoncé les identifiants
- Dans le cas ou il n'en n'existe pas
 - => On crée des codes pour identifier les entités évidentes
 - Ex.:
 - CodeBoutique pour l'identifiant de l'entité Boutique,
 - CodeClient pour l'identifiant de l'entité Client

29/09/2006 Javier Gil 9

Construction du MCD

La matrice de dépendance fonctionnelle (MDF)

Définition de la dépendance fonctionnelle

- Deux données sont en dépendance fonctionnelle, si la connaissance d'une valeur de la 1ère permet de déterminer la connaissance d'une et une seule valeur de la 2^{nde}
- La 1ère donnée est dite source, et la 2nde but
- <u>Notation</u>: Source → But

Exemple de dépendance fonctionnelle

- Supposons que un établissement universitaire est situé dans une ville et une seule.
- Si l'on connaît le nom de l'établissement on peut déterminer la ville où il est situé.
 - → La ville (but) dépende fonctionnellement de l'établissement universitaire (source)

NomEtablissement → VilleEtablissement

29/09/2006 Javier Gil 11

Construction du MCD

La matrice de dépendance fonctionnelle (MDF)

Construction de la MDF

- La MDF:
 - => représentation graphique de l'ensemble des dépendances fonctionnelles entre données.
 - => permet de faire une étude exhaustive des relations entre chaque données
 - =>Elle se présente sous forme d'une table carrée ayant pour entrées l'ensemble des données du DD:
 - Les entêtes de colonnes sont les données sources
 - · Les entêtes de lignes sont les données buts

La matrice de dépendance fonctionnelle (MDF) Construction de la MDF

- Comme 1 donnée est en dépendance fonctionnelle avec elle même, et réciproquement
 - => On traduira cette règle par un série '*' sur la diagonale
- On placera **pour chq DF** déterminée **un '1'** dans la case correspondante,
 - => Parcourir **pour chq donnée source** l'ensemble des **données buts**
 - Parcours : colonne par colonne, et pour chq colonne ligne par ligne

29/09/2006 Javier Gil 13

Construction du MCD

La matrice de dépendance fonctionnelle (MDF)

Construction de la MDF

- On se pose à chaque étape la question suivante : existe-t-il une dépendance fonctionnelle entre la donnée source et la donnée but?.
 - si OUI on place un '1'
 - si NON on passe à la ligne suivante.

La matrice de dépendance fonctionnelle (MDF)

<u>exemple</u>: le cas de la location de livres

Note: II
existe une
dépendance
fonctionnelle
entre le code
du client(1) et
le nom du
client (2)

29/09/2006

		S	0	U	R	С	Ε	S		
Buts		1	2	3	4	5	6	7	8	9
1	Code du client	*								
2	Nom du client	1	*							
3	Code livre			*	1					
4	Code exemplaire				*					
5	Montant de la caution	1				*				
6	Délai max. de retour						*			
7	Tarif normal							*		
8	Tarif retard								*	
9	Titre du livre			1	1					*
	Javier Gil									

Construction du MCD

La matrice de dépendance fonctionnelle (MDF)

Recherche d'identifiant (suite)

• Les données sources de dépendances fonctionnelles sont appelées **identifiants** des futures entités.

Graphiquement ce sont les colonnes qui comprennent des '1'

• <u>exemple</u>

CodeClient CodeBoutique

La matrice de dépendance fonctionnelle (MDF)

Les dépendances fonctionnelles composées

- La matrice des dépendances fonctionnelles ne doit pas faire apparaître de lignes sans '1',
 - si c'est le cas cela veut dire que la donnée n'est le but d'aucune dépendance fonctionnelle:
 - soit la donnée est source d'une dépendance fonctionnelle (donc un identifiant),
 - soit il manque un identifiant
 - soit la donnée n'appartient a aucune entité.
 - Elle peut appartenir à une association, si ce n'est pas le cas il faut donc l'éliminer de notre modèle.

29/09/2006 Javier Gil 17

Construction du MCD

La matrice de dépendance fonctionnelle (MDF)

- Suppression des transitivités entre données
 - L'objectif principal de la conception d'une base de données est la non redondance des informations. => Une donnée 'non Identifiant' ne doit être le but que d'une seule dépendance fonctionnelle
 - Graphiquement cela se traduit par un seul '1' par ligne, il va falloir effectuer des choix entre les dépendances fonctionnelles dans le cas contraire.
 - Exemple:
 - Code Épreuve → libellé examen
 Code Examen → libellé examen
 Code Épreuve → Code Examen
 Code Épreuve → libellé examen

29/09/2006 Javier Gil

18

Le Modèle Entités Associations (M.E.A.)

- Le modèle entités/associations (MEA) ou schéma entités/associations est souvent nommé de façon abusive modèle conceptuel des données.
- Le modèle conceptuel des données est en effet une étape de la méthode d'analyse des systèmes d'information MERISE,
- alors que le schéma entités/associations du modèle conceptuel des données est l'outil le plus connu et utilisé de la méthode MERISE

29/09/2006 Javier Gil 1

Modèle Entités Associations (MEA)

- Les Entités
 - Pour chaque donnée 'Identifiant' on va créer une entité.
 - Chaque entité possédera donc un et un seul identifiant, ainsi que l'ensemble des données buts d'une dépendance fonctionnelle entre identifiant, et elles mêmes.
 - Rappel: Si lors de l'étude des documents, et la constitution du dictionnaire des données, on ne voit pas apparaître d'identifiant spécifique pour certaines données, on en inventera un.

Modèle Entités Associations (MEA) Les Entités

• Représentation graphique

ENTITÉ

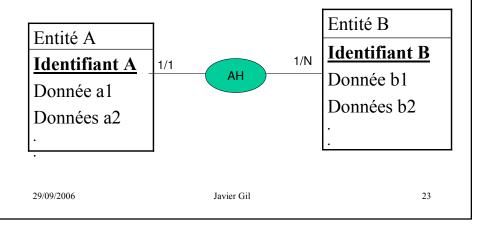
Identifiant

Donnée

Donnée

| •

29/09/2006 Javier Gil 2

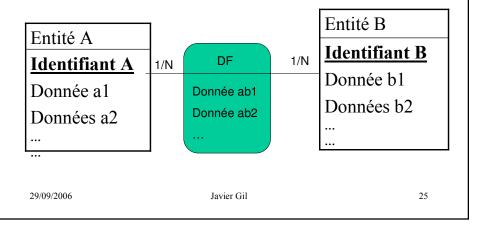

Modèle Entités Associations (MEA) Les associations

- Les associations hiérarchiques
 - Pour des dépendances fonctionnelles entre identifiants, on obtient une association hiérarchique (AH)
 - <u>Exemple</u>: CodeExemplaire → CodeLivre
 - A <u>une valeur</u> de CodeExemplaire on associe <u>une et</u> <u>une seule valeur</u> de CodeLivre
 - réciproquement
 à une valeur de CodeLivre on associe de une à N valeurs de CodeExemplaire

Modèle Entités Associations (MEA)

Les associations

• représentation graphique


Modèle Entités Associations (MEA) Les associations

- Les associations non hiérarchiques
 - Pour les dépendances fonctionnelles non élémentaires, on obtient une association non hiérarchique.
 - Ex. : CodeBoutique + CodeClient
 - A <u>une valeur</u> de CodeBoutique est associée <u>de une</u> <u>à N valeurs</u> de CodeClient réciproquement
 - A <u>une valeur</u> de **CodeClient** est associée <u>de une à N</u> <u>valeurs</u> de **CodeBoutique**

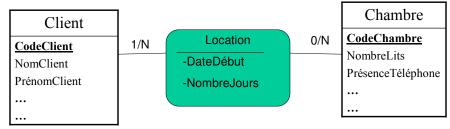
Modèle Entités Associations (MEA)

Les associations

• représentation graphique

Modèle Entités Associations (MEA) Les cardinalités

- Une association relie 1 ou plusieurs Entités
 - On trouvera donc pour chacun des arcs reliant l'association à une entité une cardinalité
 - Ex. une association binaire entre deux entités sera porteuse de deux cardinalités
- Il est recommandé d'exprimer la cardinalité minimale, et la cardinalité maximale
 - On trouvera donc les cardinalités suivantes 0/1, 1/1, 0/N, 1/N, et
 - Dans certains cas très précis N peut être déterminé 0/12, 1/2.


Modèle Entités Associations (MEA) Les cardinalités

• Un exemple:

29/09/2006 Javier Gil 2'

Modèle Entités Associations (MEA)

Les cardinalités (Un exemple)

- •1 Client loue au minimum une chambre (1), il peut en louer plusieurs (N): La cardinalité est donc 1,N
- •1 Chambre peut être loue plusieurs fois (N), elle peut ne pas être occupée (0) : La cardinalité est donc 0,N

Plan du cours

2ème séance:

- Modélisation des données : construction du Modèle Conceptuel de Données (suite)
- Pratique sur Excel
 - Correction Dictionnaire de données (DD)
 - Recherche d'identifiant
 - Matrice de dépendance fonctionnelle (MDF)